20 research outputs found

    From Compression of Wearable-based Data to Effortless Indoor Positioning

    Get PDF
    In recent years, wearable devices have become ever-present in modern society. They are typically defined as small, battery-restricted devices, worn on, in, or in very close proximity to a human body. Their performance is defined by their functionalities as much as by their comfortability and convenience. As such, they need to be compact yet powerful, thus making energy efficiency an extremely important and relevant aspect of the system. The market of wearable devices is nowadays dominated by smartwatches and fitness bands, which are capable of gathering numerous sensor-based data such as temperature, pressure, heart rate, or blood oxygen level, which have to be processed in real-time, stored, or wirelessly transferred while consuming as little energy as possible to ensure long battery life. Implementing compression schemes directly at the wearable device is one of the relevant methods to reduce the volume of data and to minimize the number of required operations while processing them, as raw measurements include plenty of redundancies that can be removed without damaging the useful information itself. This thesis presents a number of contributions in the field of compression of wearable-based data, mainly in areas of lossy compression techniques designated for the time series sensor-based data and positioning. In the scope of this work, two novel time-series compression techniques are proposed, namely Direct Lightweight Temporal Compression (DLTC) and Altered Symbolic Aggregate Approximation (ASAX), which are specifically designed to address relevant challenges of modern wearable systems. As many of the modern wearables also possess localization capabilities critical for navigation, tracking, and monitoring applications, reducing the computational and storage demands for indoor positioning applications is the second addressed challenge. Performing the positioning task quickly and efficiently on all connected devices, including wearables, becomes crucial in industrial applications, eHealth, or security. As the localization technique of choice in Global Navigation Satellite System (GNSS) signal-obscured scenarios, positioning via fingerprinting proves a reliable and efficient solution, while arising new challenges to be solved. Improving the efficiency of the fingerprinting-based system by applying lossy compressions onto the training radio map is realized by proposing, implementing, and evaluating various novel dimensionality-reduction techniques. This thesis proposes Element-Wise cOmpression using K-means (EWOK), a bitlevel compression based on element-wise k-means clustering, radio Map compression Employing Signal Statistics (MESS), a sample-wise compression that extracts signal statistics based on their locations, as well as evaluates feature-wise methods Principal Component Analysis (PCA) and Auto-Encoder (AE) that transform fingerprints into low-dimensional representation. The evaluation in the thesis shows the effectiveness of each compression scheme on 26 different datasets and provides the results achieved by combining the individual schemes together, accomplishing multi-dimensional radio map compression that sustains high positioning accuracy of the dataset, despite manyfold size reduction. The processing requirements of the positioning system are further addressed by proposing a cascade of models that reduces the required search space of the algorithm. By combining numerous Machine Learning (ML) architectures, it is capable of further reducing the positioning time (and thus, positioning effort), while improving the positioning performance. The thesis further includes the introduction of an indoor positioning dataset collected by the author, denoted TUJI 1, a novel performance metric to evaluate the latency caused by the lossy compression, and several crucial adjustments to the distance metric calculations, generalizing their applicability. The thesis provides novel insights into the compression of sensor-based, timeseries data and into reducing the computational effort of the fingerprinting positioning schemes while introducing a relevant number of novel and efficient solutions beyond the State-of-the-Art.Cotutelle -yhteisväitöskirj

    EWOk: towards efficient multidimensional compression of indoor positioning datasets

    Get PDF
    Indoor positioning performed directly at the end-user device ensures reliability in case the network connection fails but is limited by the size of the RSS radio map necessary to match the measured array to the device’s location. Reducing the size of the RSS database enables faster processing, and saves storage space and radio resources necessary for the database transfer, thus cutting implementation and operation costs, and increasing the quality of service. In this work, we propose EWOk, an Element-Wise cOmpression using k-means, which reduces the size of the individual radio measurements within the fingerprinting radio map while sustaining or boosting the dataset’s positioning capabilities. We show that the 7-bit representation of measurements is sufficient in positioning scenarios, and reducing the data size further using EWOk results in higher compression and faster data transfer and processing. To eliminate the inherent uncertainty of k-means we propose a data-dependent, non-random initiation scheme to ensure stability and limit variance. We further combine EWOk with principal component analysis to show its applicability in combination with other methods, and to demonstrate the efficiency of the resulting multidimensional compression. We evaluate EWOk on 25 RSS fingerprinting datasets and show that it positively impacts compression efficiency, and positioning performance.This work was supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska Curie grant agreements No. 813278 (A-WEAR: A network for dynamic wearable applications with privacy constraints, http://www.a-wear.eu/) and No. 101023072 (ORIENTATE: Low-cost Reliable Indoor Positioning in Smart Factories, http://orientate.dsi.uminho.pt) and Academy of Finland (grants #319994, #323244)

    Autoencoder extreme learning machine for fingerprint-based positioning: A good weight initialization is decisive

    Get PDF
    Indoor positioning based on machine-learning (ML) models has attracted widespread interest in the last few years, given its high performance and usability. Supervised, semisupervised, and unsupervised models have thus been widely used in this field, not only to estimate the user position, but also to compress, clean, and denoise fingerprinting datasets. Some scholars have focused on developing, improving, and optimizing ML models to provide accurate solutions to the end user. This article introduces a novel method to initialize the input weights in autoencoder extreme learning machine (AE-ELM), namely factorized input data (FID), which is based on the normalized form of the orthogonal component of the input data. AE-ELM with FID weight initialization is used to efficiently reduce the radio map. Once the dimensionality of the dataset is reduced, we use k -nearest neighbors to perform the position estimation. This research work includes a comparative analysis with several traditional ways to initialize the input weights in AE-ELM, showing that FID provide a significantly better reconstruction error. Finally, we perform an assessment with 13 indoor positioning datasets collected from different buildings and in different countries. We show that the dimensionality of the datasets can be reduced more than 11 times on average, while the positioning error suffers only a small increment of 15% (on average) in comparison to the baseline

    Data Cleansing for Indoor Positioning Wi-Fi Fingerprinting Datasets

    Get PDF
    Wearable and IoT devices requiring positioning and localisation services grow in number exponentially every year. This rapid growth also produces millions of data entries that need to be pre-processed prior to being used in any indoor positioning system to ensure the data quality and provide a high Quality of Service (QoS) to the end-user. In this paper, we offer a novel and straightforward data cleansing algorithm for WLAN fingerprinting radio maps. This algorithm is based on the correlation among fingerprints using the Received Signal Strength (RSS) values and the Access Points (APs)'s identifier. We use those to compute the correlation among all samples in the dataset and remove fingerprints with low level of correlation from the dataset. We evaluated the proposed method on 14 independent publicly-available datasets. As a result, an average of 14% of fingerprints were removed from the datasets. The 2D positioning error was reduced by 2.7% and 3D positioning error by 5.3% with a slight increase in the floor hit rate by 1.2% on average. Consequently, the average speed of position prediction was also increased by 14%.acceptedVersionPeer reviewe

    From Compression of Wearable-based Data to Effortless Indoor Positoning

    Get PDF
    Cotutela: Universidad de defensa de la tesis doctoral Tampere University Doctorat InternacionalThe dissertation focuses on boosting the energy efficiency of IoT and wearable devices by implementing lossy compression techniques onto sensor-based time-series data and into indoor localization paradigms. The thesis deals with lossy compression mechanisms that can be implemented for energy-e¿cient, delay-sensitive wearable data gathering, transfer, and storage. The novel DLTC compression method ensures optimal compression ratio and reconstruction error trade-off, with minimum complexity and delay. In the scope of indoor positioning, the proposed bit-level, feature-wise, and sample-wise reduction of the radio map supports accurate positioning while saving resources in data storage and transfer. The work implements a multi-dimensional compression of the radio map to boost the performance e¿ciency of the positioning system and proposes a cascade model to compensate for k-NN¿s drawback of computationally expensive prediction on voluminous datasets

    Deep Learning Based Localization and HO Optimization in 5G NR Networks

    Get PDF
    In the emerging 5G radio networks, beamforming-capable nodes are able to densely cover narrow areas with a high-quality signal. Such systems require high-level handover management system to proactively react to upcoming changes in signal quality, while restricting common issues such as ping-ponging or fast-shadowing of the signal. The utilization of deep learning in such a system allows for dynamic optimization of the system policies, based directly on the past behavior of the users and their channel responses. Our approach on handover optimization is purely non-deterministic, proving the idea that a self-learning network is able to efficiently manage user mobility in dense network scenario. The proposed network consists of feature extractors and dense layers. The model is trained in two stages, first serves as an initial weight setting in supervised fashion based on 3GPP model. The second stage is an optimization problem to reduce the number of unnecessary handovers while sustaining a high-quality connection. The model is also trained to predict the user location information as the second output. The presented results show that the number of handovers can be significantly reduced without decreasing the throughput of the system. The predicted location of the user has meter-level accuracy.acceptedVersionPeer reviewe

    Deep learning-based cell-level and beam-level mobility management system

    Get PDF
    The deployment with beamforming-capable base stations in 5G New Radio (NR) requires an efficient mobility management system to reliably operate with minimum effort and interruption. In this work, we propose two artificial neural network models to optimize the cell-level and beam-level mobility management. Both models consist of convolutional, as well as dense, layer blocks. Based on current and past received power measurements, as well as positioning information, they choose the optimum serving cell and serving beam, respectively. The obtained results show that the proposed cell-level mobility model is able to sustain a strong serving cell and reduce the number of handovers by up to 94.4% compared to the benchmark solution when the uncertainty (representing shadowing, interference, etc.) is introduced to the received signal strength measurements. The proposed beam-level mobility management model is able to proactively choose and sustain the strongest serving beam, even when high uncertainty is introduced to the measurements.publishedVersionPeer reviewe

    Transfer Learning for Convolutional Indoor Positioning Systems

    Get PDF
    Fingerprinting is a widely used technique in indoor positioning, mainly due to its simplicity. Usually, this technique is used with the deterministic k- Nearest Neighbors (k-NN )algorithm. Utilizing a neural network model for fingerprinting positioning purposes can greatly improve the prediction speed compared to the k-NN approach, but requires a voluminous training dataset to achieve comparable performance. In many indoor positioning datasets, the number of samples is only at a level of hundreds, which results in poor performance of the neural network solution. In this work, we develop a novel algorithm based on a transfer learning approach, which combines samples from 15 different Wi-Fi RSS indoor positioning datasets, to train a single convolutional neural network model, which learns the common patterns in the combined data. The proposed model is then fine-tuned to optimally fit the individual databases. We show that the proposed solution reduces the positioning error by up to 25% compared to the benchmark model while reducing the number of outlier predictions.acceptedVersionPeer reviewe

    Direct Lightweight Temporal Compression for Wearable Sensor Data

    Get PDF
    Emerging technologies enable massive deployment of wireless sensor networks across many industries. Internet of Things devices are often deployed in critical infrastructure or health monitoring and require fast reaction time, reasonable accuracy, and high energy efficiency. In this work we introduce a lossy compression method for time-series data, named Direct Lightweight Temporal Compression (DLTC), enabling energy-efficient data transfer for power-restricted devices. Our method is based on the Lightweight Temporal Compression (LTC) method, targeting further reconstruction error minimization and complexity reduction. This work highlights the key advantages of the proposed method and evaluates the method's performance on several sensor-based, time-series data types. We prove that DLTC outperforms the considered benchmark methods in compression efficiency at the same reconstruction error level.publishedVersionPeer reviewe

    Crowdsourcing Solutions for Data Gathering from Wearables

    Get PDF
    This paper gives an overview of crowdsourcing databases and crowdsourcing-related challenges and open research issues for data collected from wearable devices. It is shown that, with the advent of smarter wearable devices, the complexity of data gathering, storage, and processing in crowdsourced modes will increase exponentially and new solutions are needed in order to cope with larger data sets and low energy consumption in wearable devices, while ensuring the integrity and quality of the collected data.publishedVersio
    corecore